CIKM 2014 Competition:
Second Place Solution
Zhanpeng Fang and Jie Tang
Department of Computer Science, Tsinghua University

Task
- Given a sequence of query sessions
 - Example
 - Class1 Query1 –
 - Class1 Query1 Title1
 - Class2 Query2 –
 - Class2 Query2 Title2
 - Class2 Query2 Title3
- Classify the class label of test queries

Challenge
- Encoding character
 - Only little prior knowledge can be used
- Heterogeneous data
 - Query, title, session information
- User search behavior
 - How to incorporate user search behavior to help the classification task?
- Unlabeled data
 - How to utilize the large scale unlabeled data?

Result
- 0.9245 (public) / 0.9245 (private)
- 2nd place winner
- Achieve in 4 days, from Sep. 27th to Sep. 30th EST

Feature Extraction

Bag of word
- Given a query Q
- One gram, two grams, last gram of Q
 - $0.9091 > 0.9105$
- One gram, two grams of the clicked titles
 - $0.8452 \rightarrow 0.9091$, top 12 in the leaderboard!
- Higher grams give a bit more improvement
- More bag of words features?
 - Queries in the same session of Q?
 - Titles in the same session of Q?
 - Performance decreases, $0.9091 \rightarrow 0.89x$

Search behavior
- Macro features
 - #total search, average length of clicked titles, length of the query
 - $0.9091 > 0.9105$
- Session class features
 - For each potential class C, calculate:
 - #class C queries in the same session
 - #class C queries in the next/previous query
 - $0.9105 > 0.9145$
- Same session’s queries features
 - Only use similar queries!
 - Use Jaccard to measure similarity between queries
 \[J(A, B) = \frac{|A \cap B|}{|A \cup B|} \]
 - Bag of words feature for same session’s queries that are similar to the query Q
 - $0.9145 > 0.9182$, utilizing the large scale unlabeled data!
 - Performance decrease for adding same session’s titles

Learning Models

Learning setting
- Given a query Q
- Treat each class label respectively
- Train a classification model to predict the probability that Q belongs to a specific class
- Take the class labels with probability > 0.5 as the classes of the query Q
- If there are more than 2 labels, keep the top two with largest probability

Models
- Logistic regression
 \[P(y) = \frac{1}{1 + e^{-y(x)}} \]
 - Use the implementation of Liblinear
- Factorization machine
 \[\hat{y}(x) = w_0 + \sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=1}^{n} (v_{i,j} v_{j,i}) x_i x_j \]
 - Use the implementation of LibFM
- Gradient Boosted Decision Trees
 \[F_m(x) = F_{m-1}(x) + \gamma_m h_m(x) \]
 - Use the implementation of XGBoost

Ensemble

Step 1. Feature Extraction
 a. Bag of words features
 b. Search behavior features

Step 2. Individual Model Learning
 a. Logistic regression
 b. Factorization Machine
 c. Gradient boosted decision trees

Step 3. Ensemble Results
 a. Obtain the prediction results of individual models
 b. Use logistic regression to ensemble to results

Experimental Results

Performance on different features and different models.
GBDT is the best individual model.
Ensemble can effectively improve the performance